Sunday 26 July 2015

Nomenclature of Coordination Complexes

Coordination complexes have their own classes of isomers, different magnetic properties andcolors, and various applications (photography, cancer treatment, etc), so it makes sense that they would have a naming system as well. Consisting of a metal and ligands, their formulas follow the pattern [Metal Anions Neutrals]±Charge, while names are written Prefix Ligands Metal(Oxidation State).

Introduction

According to the Lewis base theory, ligands are Lewis bases since they can donate electrons to the central metal atom. The metals, in turn, are Lewis acids since they accept electrons. Coordination complexes consist of a ligand and a metal center cation. The overall charge can be positive, negative, or neutral. Coordination compounds are complex or contain complex ions, for example: 
  • Complex Cation: [CO(NH3)6]3+
  • Complex Anion: [CoCl4(NH3)2]
  • Neutral Complex: [CoCl3(NH3)3]
  • Coordination Compound: K4[Fe(CN)6]
A ligand can be an anion or a neutral molecule that donates an electron pair to the complex (NH3, H2O, Cl-). The number of ligands that attach to a metal depends on whether the ligand is monodentate, bidentate, or polydentate. For more information, see Ligands andChelation.

Naming Coordination Complexes

To begin naming coordination complexes, here are some things to keep in mind.  The coordination compounds are named in the following way. (At the end of this tutorial, there are additional examples that demonstrate how coordination compounds are named.)
A. When naming coordination compounds, always name the cation before the anion. This
rule holds regardless of whether the complex ion is the cation or the anion. (This is just
like naming an ionic compound.)
B. In naming the complex ion: 
  1. Ligands are named first in alphabetical order.
  2. The name of the metal comes next.
  3. The oxidation state of the metal follows, noted by a Roman numeral in parentheses (II, IV).                                                               

Rule 1: Anionic Ligands

Ligands that act as anions which end in "-ide" are replaced with an ending "-o" (e.g., Chloride → Chloro). Anions ending with "-ite" and "-ate" are replaced with endings "-ito" and "-ato" respectively (e.g., Nitrite → Nitrito, Nitrate → Nitrato).

Table 1: Anionic Monodentate Ligands
Molecular FormulaLigand NameMolecular FormulaLigand Name
F-FluoroOH-Hydroxo
Cl-ChloroSO42-Sulfato
Br-BromoS2O32-Thiosulfato
I-IodoNO2-Nitrito-N-; Nitro
O2-OxoONO-Nitrito-O-; Nitrito
CN-CyanoSCN-Thiocyanato-S-; Thiocyanato
NC-IsocyanoNCS-Thiocyanato-N-; Isothiocyanato

Rule 2: Neutral Ligands

Most neutral molecules that are ligands carry their normal name. The few exceptions are the first four on the chart: ammine, aqua, carbonyl, and nitrosyl.

Table 2: Select Neutral Monodentate Ligands. Note: Ammine is spelled with two m's when referring to a ligand. Amines are something else.
Molecular Formula of LigandLigand Name
NH3Ammine
H2OAqua
COCarbonyl
NONitrosyl
CH3NH2Methylamine
C5H5NPyridine

Polydentate ligands follow the same rules for anions and neutral molecules.

Table 3: Select Polydentate ligands
enEthylenediamine
ox2-Oxalato
EDTA4-Ethylenediaminetetraacetato

Rule 3: Ligand Multiplicity

The number of ligands present in the complex is indicated with the prefixes di, tri, etc. The exceptions are polydentates that have a prefix already in their name (en and EDTA4- are the most common). When indicating how many of these are present in a coordination complex, put the ligand's name in parentheses and use bistris, and tetrakis.

Table 4: Prefixes for indicating number of ligands in a complex.
Number of LigandsMonodentate LigandsPolydentate Ligands
1mono-
2dibis
3tritris
4tetratetrakis
5penta-
6hexa-

Prefixes always go before the ligand name; they are not taken into account when putting ligands in alphabetical order. Note that "mono" often is not used. For example, [FeCl(CO)2(NH3)3]2would be called triamminechlorodicarbonyliron(III) ion. Remember that ligands are alwaysnamed first, before the metal is. 

Example 1
What is the name oft his complex ion: [CrCl2(H2O)4]+?
SOLUTION
Let's start by identifying the ligands. The ligands here are Cl and H2O. Therefore, we will use the monodentate ligand names of "chloro" and "aqua". Alphabetically, aqua comes before chloro, so this will be their order in the complex's name. There are 4 aqua's and 2 chloro's, so we will add the number prefixes before the names. Since both are monodentate ligands, we will say "tetra[aqua]di[chloro]".
Now that the ligands are named, we will name the metal itself. The metal is Cr, which is chromium. Therefore, this coordination complex is called tetraaquadichlorochromium(III) ion. See the next section for an explanation of the (III).
Example 2
What is the name oft his complex ion: [CoCl2(en)2]+?
SOLUTION
We take the same approach. There are two chloro and ethylenediamine ligands. The metal is Co, cobalt. We follow the same steps, except that en is a polydentate ligand with a prefix in its name (ethylenediamine), so "bis" is used instead of "bi", and parentheses are added. Therefore, this coordination complex is called dichlorobis(ethylenediamine)cobalt(III) ion.

Rule 4: The Metals

When naming the metal center, you must know the formal metal name and the oxidation state. To show the oxidation state, we use Roman numerals inside parenthesis. For example, in the problems above, chromium and cobalt have the oxidation state of +3, so that is why they have (III) after them. Copper, with an oxidation state of +2, is denoted as copper(II). If the overall coordination complex is an anion, the ending "-ate" is attached to the metal center. Some metals also change to their Latin names in this situation. Copper +2 will change into cuprate(II). The following change to their Latin names when part of an anion complex:

Transition MetalLatin
IronFerrate
CopperCuprate
TinStannate
SilverArgentate
LeadPlumbate
GoldAurate

The rest of the metals simply have -ate added to the end (cobaltate, nickelate, zincate, osmate, cadmate, platinate, mercurate, etc. Note that the -ate tends to replace -um or -ium, if present).
Finally, when a complex has an overall charge, "ion" is written after it. This is not necessary if it is neutral or part of a coordination compound (Examaple 3). Here are some examples with determining oxidation states, naming a metal in an anion complex, and naming coordination compounds.
Example 3
What is the name of [Cr(OH)4]- ?
SOLUTION
Immediately we know that this complex is an anion. There is only one monodentate ligand, hydroxide. There are four of them, so we will use the name "tetrahydroxo". The metal is chromium, but since the complex is an anion, we will have to use the "-ate" ending, yielding "chromate". The oxidation state of the metal is 3 (x+(-1)4=-1). Write this with Roman numerals and parentheses (III) and place it after the metal to get tetrahydroxochromate(III) ion.
Example 4
What is the name of  [CuCl4]2- ?
SOLUTION
If you got tetrachlorocuprate(II) ion, you are correct.

A last little side note: when naming a coordination compound, it is important that you name the cation first, then the anion. You base this on the charge of the ligand. Think of NaCl. Na, the positive cation, comes first and Cl, the negative anion, follows.
Example 5
What is the name of  [Pt(NH3)4)][Pt(Cl)4] ?
SOLUTION
NH3 is neutral, making the first complex positively charged overall. Cl has a -1 charge, making the second complex the anion. Therefore, you will write the complex with NH3 first, followed by the one with Cl (the same order as the formula). This coordination compound is called tetraammineplatinum(II) tetrachloroplatinate(II).
Distinguishing between linkage isomers.
Example 6
What is the name of [CoCl(NO2)(NH3)4]?
SOLUTION
This coordination complex is called tetraamminechloronitrito-N-cobalt(III). N comes before the O in the symbol for the nitrite ligand, so it is called nitrito-N. If an O came first, as in [CoCl(ONO)(NH3)4]+, the ligand would be called nitrito-O, yielding the name tetraamminechloronitrito-O-cobalt(III).
Nitro (for NO2) and nitrito (for ONO) can also be used to describe the nitrite ligand, yielding the names tetraamminechloronitrocobalt(III) and tetraamminechloronitritocobalt(III).

Writing Formulas of Coordination Complexes

The formula of a coordination complex is written in a different order than its name. The chemical symbol of the metal center is written first. The ligands are written next, with anion ligands coming before neutral ligands. If there is more than one anion or neutral ligand, they are written in alphabetical order according to the first letter in their chemical formula.
In a coordination compound's name, when one of the ions is just an element, the number of atoms is not indicated with a prefix. Since it still has to be written in the formula, it is determined by balancing the overall charge of the compound. (For example, tetrafluorochromium(VI)chloride becomes [CrF4]Cl2.
Examples
  1. Amminetetraaquachromium(II)
  2. Amminesulfatochromium(II)
  3. Amminetetraaquachromium(II) sulfate
  4. Potassium hexacyanoferrate(III)
SOLUTION
  1. Amminetetraaquachromium(II) ion would be written as [Cr(H2O)4(NH3)]+2. Both ligands are neutral, so they are ordered alphabetically with H2O before NH3. Their order in the formula is the opposite of that in the complex's name since one uses their chemical symbols and the other uses the names of the ligands.
  2. Amminesulfatochromium(II) is written as [Cr(SO4)(NH3)]. SO4 is an anion, so it comes before NH3.
  3. Amminetetraaquachromium(II) sulfate -> Try this on your own. Did you get [Cr(H2O)4(NH3)]SO4? If you did, you are correct.
  4. Potassium hexacyanoferrate(III) -> Try this on your own. Did you get K3[Fe(CN)6]? Remember to balance the K!


Problems

Write the name of the following complexes (Chapter 24 / Custom Edition Chapter 21 Exercises):
  1. [CoCl3(NH3)3]
  2. [Co(ONO)3(NH3)3]
  3. [Fe(ox)2(H2O)2]-
  4. Ag2[HgI4]

Answers

  1. triamminetrichlorocobalt(III)
  2. triamminetrinitrito-O-cobalt(III); or triamminetrinitritocobalt(III)
  3. diaquadioxalatoferrate(III) ion
  4. silver(I) tetraiodomercurate(II)

No comments:

Post a Comment